Visit to Stourhead (Western) Estate By kind permission of Nick C Hoare (Owner) Led by David Pengelly & Rob Coventry (Consultant foresters) Guests: Phil Sterling, Dan Alder & Simon Nash Audience – Wessex Silvicultural Group

<u>Theme for the day: Biodiversity in irregular conifer dominated stands</u> and the relationship between habitat features and biodiversity output

10.30 hours, Tuesday 17th May 2022

Stop 1.

Stourhead Biodiversity Study

<u>Theme for the day: Biodiversity in irregular conifer dominated stands</u> and the relationship between habitat features and biodiversity output

Study area: Stourhead (Western) Estate and National Trust Stourhead Estate

Trophic levels studied: plants, spiders, moths, bats, birds

Stop 2.

Stourhead Surveys

Taxonomic	Stage 1	Stage 2	Stage 3	All Stand Stages
Group				
Plants	52	86	109	128
Moths	171 (2867)	184 (3722)	175 (3575)	248 (10164)
Bats	11 (878)	12 (1344)	13 (3718)	13 (5940)
Birds	N/A	22 (125)	25 (278)	26 (403)

Results – part 1

- 248 moths species 27% of larger (macro) moths associated with woodland;
- 13 bats species 76% of all UK resident species. Both Lesser and Greater Horseshoe bat at Stourhead (though just 6 registrations). Barbastelle was 5th most active bat (IUCN Red List);
- 26 birds species including 2 Red Listed Birds of Conservation Concern, present at Stourhead – Marsh tit & Spotted flycatcher (low numbers);
- 128 plant species 94 vascular plants, no outstanding rarities*

* <u>https://www.nature.scot/doc/naturescot-research-report-1211-establishing-woodland-plants-broadleaved-woods-interim-best-practice</u>

How does this compare with other sites? Rushmore Estate

486 moth species (30,757 individuals)

11 bat species

20 woodland bird species - note woodland only

91 vascular plant species – diverse ancient woodland flora – 31 ancient woodland indicators

Stourhead Surveys Results – part 2

Habitat structural features particularly important for increasing biodiversity:

Stop 3.

- Higher canopy cover of broadleaved trees was an important habitat feature particularly for broadleaved tree feeding moths and one bat species
- Lower basal area, promoting higher habitat complexity, an important factor influencing biodiversity, particularly higher plant and bird diversity.
- Maintaining a variable canopy with patchy openness is important. Certain groups like bats responded to more open conditions whereas moths were associated with more closed conditions
- Greater quantities of deadwood promoted activity of Common and Soprano Pipistrelle
- Understorey positively associated with the number of spider webs

Note no consistent differences between the biodiversity in the three stand development stages:

- Overlapping habitat structures found across the stand stages
- The most developed stand needs 20+ years to reach equilibrium following transformation
- External factors to each stand / area such as surrounding landscape habitats influencing what was recorded within a stand

Relationship between bird diversity and basal area. Bird diversity was higher when basal area was lower

Positive relationship between activity of Brandt's / Whiskered bats and broadleaved canopy cover

Group	Habitat Feature	Relationship	Significance
Plants			
Plant species diversity	Basal area	Negative	**
Woodland generalist species richness	Percentage broadleaf canopy	Positive	***
Moths			
Total moth species richness	Canopy openness	Negative	**
Total moth abundance	Canopy openness	Negative	*
Total moth species diversity	Canopy openness	Negative	***
Woodland moth species richness	Canopy openness	Negative	**
Woodland moth abundance	Canopy openness	Negative	**
Broadleaved feeding moth species richness	Complexity score	Positive	**
Broadleaved feeding moth abundance	Distance to broadleaf	Positive	***
Broadleaved feeding moth abundance	Percentage broadleaf canopy	Positive	***
Conifer feeding moth species richness	Basal area	Positive	**
Conifer feeding moth abundance	Distance to broadleaf	Positive	***
Spiders			
Number of spider webs	Bramble	Positive	**
Number of spider webs	Brash	Positive	**
Bats			
Soprano Pipistrelle	Average DBH	Positive	**
Soprano Pipistrelle	Canopy openness	Positive	***
Common Pipistrelle	Canopy openness	Positive	***
Serotine	Canopy openness	Positive	*
Soprano Pipistrelle	Deadwood snags	Positive	*
Common Pipistrelle	Fallen deadwood	Positive	**
Brandt's/Whiskered	Percentage broadleaf canopy	Positive	***
Birds			
Bird species diversity	Basal area	Negative	**

How does this compare with Rushmore Estate?

Moths

- Considerable variation in total numbers & species counts between plots
- Overall abundance & species count similar across treatments (all moths and across 335 woodland species)
- Across the 2361 moths of 98 rarer woodland species, the overall abundance of moths was significantly higher in Irregular than either Coppice or Limited intervention; and number of species was significantly higher in Irregular than Limited intervention
- A small study of leaf-mining moths showed that numbers and density were significantly higher in Irregular than Coppice

Bats

- Species richness similar between treatment stages at Stourhead; at Rushmore it was highest in irregular
- Bat activity was highest amongst irregular stands for 9 of 11 species at Rushmore and activity was similarly greatest in the stage 3 stands at Stourhead; i.e. structurally complex and open
- The three commonest bat species, common and soprano pipistrelles followed by Whiskered/Brandt's bats showed strong association with canopy openness
- Barbastelle bat is the UK's most threatened resident species and was found significantly more in irregular stands at Rushmore and was also found at Stourhead. Not able to show statistically any association with a stage or habitat structure here BUT this species ranges over several kilometres from tree roosts and its presence in the summer signals suitable feeding...a moth specialist!

Birds

- A similar bird community to Rushmore shared several specialist woodland birds at Stourhead including a mixture of woodland specialists associated with understorey, e.g. willow warbler and marsh tit, as well as canopy species e.g. treecreeper and great spotted woodpecker
- Lower basal areas found in both irregular and coppice promoted bird species richness; at Stourhead this holds true as species richness for woodland specialists and generalists were both significantly related to lower basal area associated with stand complexity

Stop 4.

DROPPING GUTTER (Cpt 204)	Management history
Cpt details	
204a,e,f,g 24.34 ha. – NGR: ST753186	Local Research Stand
SITE DESCRIPTION:	Selected Seed Stand
Soil – Cretaceous Upper Greensand,	 Stand identity: pmeST40-12SE
Gault clay downslope, rotational land slippage;	 Species: Douglas fir
Aspect – Level, dipping NE;	 Planted: 1907-1943
Elevation: 175m asl	Date registered: 2015
WORKING CIRCLE:	Main felling interventions, with some
Selection felling – Mainly conifer	high value timber harvested between:
	• 2001, 2007, 2013, 2017
PLANTATION STATUS: RECENT	 Diseased larch felling 2018 & 2021
33% DF (P.1907, 1939, 1943, 1959);	
45% Other conifer SS, NS, WH, RC, JL	Felling intervention summer 2017:
(P.1945, 1957, 1959;	Felling focus on those surpassed Target
22% B/Is: SC, AR, BI, BE, POK, AH (1871,	Diameter, with focus on lower quality;
1959, 1968)	Renewal by natural regeneration &
	enrichment planting of target spp.;
	Post harvesting tending in 2018
January 2016 (per hectare):	
• Total BA = 29.8	Basal Area following 2017 harvesting,
• SPH = 167	PLUS diseased larch & ash removals in 2018 &
• Silves = 311m ³	<u>2021:</u>
	BA removed = 7.24 (21.3% of pre-felling
BA distribution by diameter group:	BA)
 Small (16-32cm): 9% (Target 22%) 	Size class & spp. component in the
 Medium (32-52cm): 27% (Target 32%) 	removals:
 Large (52-72cm): 38% (L & VL Target 	• Small 4% BA, Medium 29% BA, Large
46%)	42% BA, V large 25% BA;
 V large (>72cm): 26% 	• Larch 33.3%, Evergreen conifer 50.3%,
	Broadleaves 16.5%
Species components (BA):	Current stocking estimate (spring
33% Douglas fir	2022): 27 BA
 37% other evergreen conifer 	
• 8% larch	
22% broadleaves	

REGENERATION FOCUS:	INCREMENT DATA:
Natural; Supplemented with Artificial;	Annual Increment 2006–2016 = 11.71
Diversify species and genetic base of	m ³ (BA 1.02)
species already thriving;	Increment contribution by species
	group:
	 Douglas fir = 25.3% (Increment to GS ratio 0.76)
	• Other evergreen conifer = 58% (Increment to GS ratio 1.57)
	• Larch = 6.3% (Increment to GS ratio 0.83)
	 Broadleaves = 10.1% (Increment to GS ratio 0.45)

Stourhead Precipitation

Average over 26 yrs (1995 to 2020): 1046mm Wettest year in 26 years at Home Farm (2020): 1.4 metres! Driest months consistently April & September Key is the precipitation from 1 April: 'full tank' from winter

Deadwood volumes in AFI plots 2016 cycle, Dropping Gutter, Stourhead Western Estate

Figure 3.2.1 - Distribution of standing deadwood and fallen deadwood by diameter size

Figure 3.2.2 - Distribution of total deadwood by diameter size and species

Out of the 12 species recorded on this research stand, 11 are found as deadwood. Figure 3.2.3 provides an illustration of the distribution of deadwood by species and by size and position.

Change in deadwood volumes in AFI plots 2006 - 2016, Dropping Gutter, Stourhead Western Estate

Veete	Fallen deadwood		Standing deadwood		Total
Tedis	< 30cm (m3/ha)	≥ 30cm (m3/ha)	< 30cm (m3/ha)	≥ 30cm (m3/ha)	deadwood
2006	11.5 (61%)	2.6 (14%)	0.1 (1%)	4.7 (25%)	18.9 (100%)
2011				2.9 (100%)	2.9 (100%)
2016	20.5 (80%)	1.1 (4%)		4.1 (16%)	25.7 (100%)

Table 3.2.2 and the Figure 3.2.4 show the evolution of volumes of deadwood.

Table 3.2.2 - Evolution of volume of deadwood

Figure 3.2.4 - Evolution of volumes of deadwood between inventories

Stop 5. Deer Summary

Deer management group area covers 923 hectares of woodland Average of 1 deer culled per 5.6 ha of woodland (22 year average); Last 8 years 4.4 ha. An average of 177 deer culled per annum over last 22 yrs; Last 8 years 219 2021 deer browse / fray damage to vulnerable regeneration: 6% (target <12%). There are localised high levels of damage

Grey Squirrel Summary

Grey squirrel control area covers 756 hectares of woodland Average of 1.6 grey squirrels culled per hectare of woodland (7 year average); An average of 1031 culled per annum over last 7 years;

Photos: Dan Alder

Tree Species group British moths

(plus others for compariso	n)	All moths ²	Micro-moths ³
[Date	2020	2018
Willows		267	73
Birches		236	85
Oaks (deciduous)		213	81
Hawthorns		177	61
Poplars		120	45
Apples		113	57
Hazel		104	29
Alders		92	32
Elms		71	25
Pines		67	37
Spruces		63	31
Beech		61	16
Maples (excl Syc.)		60	22
Limes		54	14
Hornbeam		45	23
Sycamore		45	16
Larches		40	12
Lichens		40	21
Ash		37	9
Mosses		34	29
Firs		31	18
Juniper		23	14
Holm Oak		22	7
Algae		21	11
Bracken		17	3
Cypresses		13	2
Holly		6	1
Western Red-cedar		6	1

² Henwood, B.P. & Sterling, P.H (2020) Field Guide to the Caterpillars of Great Britain and Ireland. Bloomsbury Wildlife

³ Sterling, P.H & Parsons, M.S (2012) Field Guide to the Micro-moths of Great Britain and Ireland. British Wildlife Publishing

Tree Species group	Britain	European Russi	a British mot	British moths	
	All insects ¹	All insects ¹	All moths ²	Micro-moths ³	
	Date 1961	1961	2020	2018	
Oaks (deciduous)	284	150	213	81	
Willows	266	5 147	267	73	
Birches	229	101	236	85	
Hawthorns	149	59	177	61	
Poplars	97	122	120	45	
Apples	93	3 77	113	57	
Pines	91	. 190	67	37	
Alders	90	63	92	32	
Elms	82	81	71	25	
Hazel	73	26	104	29	
Beech	64	79	61	16	
Ash	41	. 41	37	9	
Spruces	37	117	63	31	
Limes	31	. 37	54	14	
Hornbeam	28	53	45	23	
Larches	17	44	40	12	
Firs	16	6 42	31	18	
Holly	7	7 8	6	1	

¹ Southwood, T. R. E. (1961). The number of species of insect associated with various trees. Journal of Animal Ecology, 30, 1-8

(Kennedy, C.E.J. & Southwood, T.R.E (1984). The Number of Species of Insects Associated with British Trees: A Re-Analysis. Journal of Animal Ecology 53, 455-478)

² Henwood, B.P. & Sterling, P.H (2020) Field Guide to the Caterpillars of Great Britain and Ireland. Bloomsbury Wildlife

³ Sterling, P.H & Parsons, M.S (2012) Field Guide to the Micro-moths of Great Britain and Ireland. British Wildlife Publishing